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Abstract

Anisotropy and inhomogeneity of dry friction can induce a dependence of friction force on a sliding path
curvature[ The objective of this study is to extend mathematical models of anisotropic friction by including
the sliding path curvature e}ects[ Due to this\ a set of independent variables of the friction force constitutive
equation is extended\ and a derivative of the sliding velocity unit vector is taken into account[ The friction
description is investigated in a general case and in a particular when non!homogeneous friction properties
form concentric circles in a contact surface[ It has been found that] the friction constitutive equation and its
variables satisfy the axiom of objectivity^ the Second Law of Thermodynamics restricts components of
tensors in the constitutive equation^ there are radial and concentric circular privileged sliding directions[
Non!homogeneous friction in the form of concentric circles has the global axial symmetry\ while two tensors
in the constitutive equation are de_ned locally and they have orthotropic and anisotropic properties\
respectively[ The sliding path curvature can induce positive and negative additional friction[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

Modern technology stimulates developments of mathematical models of friction\ by requiring a
more precise description of the frictional resistance to be considered in numerical tools "FEM#[
To provide a more realistic model of friction\ there is a need to extend friction descriptions by
including non!homogeneity and anisotropy\ since a certain amount of frictional inhomogeneity
and anisotropy is present in component parts of mechanical systems fabricated from material with
complex microstructure "composites\ polymers\ ceramics\ etc[#[ In order to design or develop good
machinery component parts it is necessary to characterize and understand the friction and wear
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behavior of materials with complex microstructure[ The problem gives motivations for inves!
tigations of anisotropy and non!homogeneous phenomena of friction\ wear and frictional heat[

In general\ anisotropy of friction and wear results from the roughness anisotropy of contacting
surfaces and anisotropy of mechanical properties of crystals\ _brous and laminated composites\
polymers\ ceramics and other materials with microstructure "e[g[ layerÐlattice materials#[

In the past scientists such as Coulomb "0674# and Morin "0722Ð0725#\ observed in their friction
experiments on wooden surfaces\ that friction coe.cients were dependent on whether sliding took
place parallel to or perpendicular to the wood _bers[ Recent experiments of anisotropy friction in
wood and composites have been carried out by Curnier "0885#[ The literature devoted to exper!
imental and theoretical investigations on anisotropic friction\ wear and frictional heat was pre!
sented by Zmitrowicz "0881a\ b\ 0882a\ b\ 0884a\ b#[

Polytetra~uoroethylene "PTFE# and high density polyethylene "HDPE# polymers are sensitive
to the orientation of their molecular chains with respect to the sliding direction[ In pin!on!disc
tests\ Briscoe and Stolarski "0868\ 0874\ 0875\ 0880# observed that a rate of wear was also a
function of a curvature of sliding trajectories which the polymer pin described on the disc surface[
By changing a radius of a circular path\ di}erent wear rates were observed[ An angular velocity of
rotation and the radius of rotation were varied\ while the normal pressure and the linear sliding
velocity were maintained at constant values for each test[ Therefore\ sliding conditions of the pin
against the disc did not change[ Maximum wear rate was for large radius of the path and signi_cant
reduction in wear rate was when the radius approached the radius of the pin[ There was a factor!
of!2[4 change in values of the wear rates[ Measurements of the frictional force indicated that radii
e}ects on the friction were less pronounced in comparison with the wear rates[

In the opinion of Briscoe and Stolarski "0868\ 0874\ 0880#\ the investigated polymers wear by a
creation of {transferred _lms highly oriented| in the direction of sliding\ and the sliding occurs
between oriented _brils[ Briscoe and Stolarski "0868\ 0874\ 0880# thought that an increase of
curvature of trajectories\ and the resulting increase of reorientation of molecular chains within the
contact area are responsible for the observed behavior of the polymers[

In the present analysis\ we postulate that the in~uence of the sliding path curvature on friction
can result from anisotropy and inhomogeneity of sliding surface friction[ The phenomena of
abrasive wear and dry friction are usually treated as inseparable\ this way the postulate deals with
wear as well[

Physical properties of solids and their surfaces are very often non!homogeneous and they can
form di}erent _eld singularities in a contact between two bodies "in geometric terms] series of
radii\ concentric circles and ellipses\ spirals\ etc[#[ Inhomogeneity refers to physical properties of
materials "e[g[ wood\ crystals\ composites# or to speci_c techniques of material manufacture and
_nishing surfaces\ see Fig[ 0[ For example\ microphotographs carried out by Tolansky "0857# show
growth spirals on a crystal face of silicon carbide[

Non!homogeneous physical properties of solids and their surfaces are the causes of the non!
homogeneous anisotropy friction[ This is the case where anisotropy friction depends on the position
of a contact point with respect to a singular _eld center[ Then\ the frictional resistance follows on
the one hand from the physical properties of the surface\ on the other hand it can additionally
depend on a sliding trajectory in this surface[ Di}erent resistances to sliding can occur for rectilinear
or curved trajectories\ for a circular path with small curvature radius or the circular path with
great curvature radius\ etc[ In the contact surface with complex properties besides rectilinear
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Fig[ 0[ Four types of conventional machined patterns in a surface] "a# rectilinear and parallel^ "b# crossed in two slant
directions^ "c# circular relative to the center of the surface^ "d# radial relative to the center of the surface[

privileged friction directions also curved privileged directions can exist "concentric circles\ ellipses\
spirals etc[#[ These facts should be included in the mathematical formulation of the friction law[
Former models of anisotropy friction paid no attention to the anisotropic non!homogeneous
friction and to the sliding path\ see] Moszyn�ski "0840#\ Moreau "0869\ 0863#\ Micha<owski and
Mro�z "0867#\ Ziegler "0870#\ Aleksandrovich et al[ "0874#\ Goyal et al[ "0880#\ Mro�z and Stup!
kiewicz "0881\ 0883#\ He and Curnier "0882#\ Telega "0884# and Buczkowski and Kleiber "0886#[

The objective of this study is to present our _rst research results towards the contribution of the
sliding path curvature e}ects in mathematical models of anisotropic friction and to give a suitable
framework allowing a rational and uni_ed formulation of non!homogeneous anisotropic friction[
The in~uence of the sliding path on friction is included in the friction equation by an extension of
a set of independent variables taking into account a derivative of the sliding velocity unit vector[
Thermodynamical limitations\ symmetry properties and privileged sliding directions are discussed
in detail[

1[ Assumptions

A trajectory or path of a moving material point in the surface R1 in the range of time I �"t9\ te#
is de_ned by an image set of the set I and the following mapping

I % t : x"t# $ R1\ "0#
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Fig[ 1[ Sliding trajectory of a material point in a plane[

where\ x is a radius vector\ t is time[ With the aid of the mapping "0# we can introduce an arc
length parameter s and a one!dimensional parameterization of the plane curve "motion trajectory#\
Fig[ 1[ The following relation exists between the arc length parameter s and the time t

s"t# � g
t

t9

=V"t# =dt\ "1#

I % t : s"t# $ R0\ "2#

where V is a velocity vector[ A number de_ned by "1# and "2# is called a way passed by the material
point from the instant t9 to the instant t[ The mappings "0# and "2# are the di}erentiable functions[

From the de_nition of the velocity vector it follows that this vector is always tangent to a curve
representing the motion path

V �
dx

dt
�

dx

ds
ds
dt

� vV\ "3#

where\ V is a velocity value

V 0 =V= �
ds
dt

\ "4#

and v denotes a unit vector tangent to the trajectory "v = v � 0#\ i[e[

v �
dx

ds
[ "5#

According to the FrenetÐSerret _rst formula\ we have
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dv

ds
�

n

r
\ "6#

where\ n is a unit vector normal to the path "n = v � 9\ n = n � 0#\ r is a path curvature radius

r � b
dv

dsb
−0

[ "7#

0:r is called the curvature[ The vector dv:ds at any point of the path is normal to the unit vector v

or it vanishes[ The length of the vector dv:ds is equal to the inverse of the curvature radius[ Thus\
dv:ds is not a unit vector[

The parameterization s determines uniquely the pair of vectors v and n\ see "5# and "6#[ Both
de_nitions are always valid\ i[e[ for any instant of time and any place of the motion trajectory[
Unit vectors v and n are orthogonal at any point of the curve\ Fig[ 1[ The unit vector v is directed
in the motion direction\ and n is always directed into the curvature center[ During the motion
along the curve the unit vectors change their directions "with respect to an observer or the reference
system# but they remain orthogonal[

Usually it has been assumed\ that the friction force vector t at the point x of the contact surface
has the same value for all sliding trajectories which pass through x and have the sliding velocity
unit vector v[ In other words\ the friction force vector depends on the velocity direction only
through the sliding velocity unit vector v at x\ it does not depend on other sliding trajectory
parameters[ We postulate that the friction force vector at the given point depends on the sliding
velocity direction v and on the sliding path curvature[ Therefore\ we extend a set of independent
variables of a friction force equation taking into account the derivative of the sliding velocity unit
vector i[e[ dv:ds[

Let us replace the friction force vector formulation of the form

t � −Nf "v# "8#

by the following de_nitions

t � −Nf 0v\
dv

ds1\ "09#

t � −Nf 0v\
n

r1\ "00#

where\ N − 9 is a normal pressure "Zmitrowicz\ 0884#[ The sum of two monomials "i[e[ single!
term polynomials# de_nes a simple form of the function "00#\ i[e[

t � −N 0Cv¦E
n

r1[ "01#

Subsequent terms in the equation "01# play the following roles] t is the response^ N\ v and n:r are
causes^ C and E are equation coe.cients "parametric tensors#[ The second order tensor C de_nes
friction resulting from physical properties of the contact surface i[e[ anisotropy and inhomogeneity[
Tensor E includes the e}ects associated with the sliding motion i[e[ constraints imposed on the
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sliding motion[ The well!known friction postulates of Amontons and Coulomb are accepted in the
formulation "01#[

The friction force "01# can be expressed as a sum of two components\ i[e[

t � t9¦tr\ "02#

where

t9 � −NCv\ "03#

tr � −NE
n

r
0 −NE

dv

ds
[ "04#

The component t9 does not depend on the sliding path curvature\ the component tr depends on
the curvature[

The vector dv:ds introduces e}ects caused by the sliding path curvature[ If the relative motion
trajectory is a curve at the given contact point\ then the contribution of dv:ds can be taken into
account "exactly\ if the curvature radius r has a _nite value#[ If the sliding path is a straight line\
then the curvature vanishes "0:r � 9#\ and the dependence between the friction force t and dv:ds
vanishes[

In the light of the formulation "01#\ in the singular case "r � 9#\ the friction component tr tends
to in_nity\ so the friction force t is not determined\ and it must be excluded from the considerations[
However\ the singular case "r � 9# is physically meaningless[ It can be explained with the aid of
the following example[ Taking into account concentric circular trajectories\ one can reduce radii
of the circles from a _nite value up to zero[ In the singular case\ the curvature radius is equal to
zero\ and the circular sliding trajectory reduces to a single point[ If the circular trajectory reduces
to the single point "r � 9#\ then tangent "v# and normal "n# directions to the trajectory cannot be
distinguished uniquely\ there are no sliding and no dynamic friction[

Very di}erent case takes place\ if two bodies are instantly at the contact at a single point and a
relative velocity has a _nite value and a de_nite direction[ Then\ the friction force is completely
described by the unit vector of the relative velocity and the normal pressure[ In this case\ the
component tr can be neglected\ since the sliding trajectory at the initial instant can be assumed to
be a straight line "i[e[ r � �#[

The friction force component tr has the following values for di}erent curvature radii

tr8
� 9\ for r � �

� 9\ for 9 ³ r ³ �

� �\ for r � 9

"05#

Friction which depends on the direction of sliding is called anisotropic friction[ A deviation in
the friction force from the direction of sliding and a dependence of the friction magnitude on the
sliding direction are typical features of contacts with frictional anisotropy[ Anisotropic friction
forces vary from the assigned sliding direction\ Fig[ 1[ Isotropic friction forces always act in a
direction opposite to that of the sliding velocity[

The anisotropic friction coe.cient ma and the angle b of friction force inclination "Fig[ 1# for
any sliding direction can be obtained from the following relations
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ma � N−0 =t=\ "06#

sin b �
t = n

=t=
[ "07#

Coe.cients of the friction force components collinear with the sliding direction and normal to the
sliding direction are given by

m>
a � −N−0t = v\ "08#

m0
a � N−0t = n[ "19#

It happens very often that _elds of pressure and relative velocity are inhomogeneous in a contact
area[ In spite of that a local constitutive law of friction should be independent of that whether its
independent variables deal with homogeneous or non!homogeneous pressure and velocity _elds[
A di}erent situation takes place if physical properties of the surface are inhomogeneous[

In some cases\ physical reasons of anisotropy friction "wood and composite _bers\ machining
marks\ etc[# form non!homogeneous _elds in the surface\ and in geometric terms they cannot be
represented as a series of parallel and equidistant straight lines but as series of radii\ concentric
circles and ellipses\ spirals\ etc[ For example\ Fig[ 0 shows four types of common directions of lay
in a surface[

Let us consider non!homogeneous friction properties which form concentric circles in the contact
surface\ Fig[ 0"c#[ The tensor C de_nes anisotropic and non!homogeneous friction properties of
this surface\ and it gives a local description of friction "i[e[ the description at the given point of the
contact#[ The tensor has the following form

C � m0k0 & k0¦m1k1 & k1[ "10#

k0 and m0 are associated with the tangent to the concentric circles in the case of k0 and with the
sliding along the circles in the case of m0\ it holds at any point of the contact[ k1 and m1 are de_ned
for the sliding along the radii of the concentric circles[ Therefore\ unit vectors k0 and k1 form an
orthogonal basis at any point of the contact surface "Fig[ 2#[ Friction coe.cients m0 and m1 have
constant values\ and they de_ne friction along the concentric circles "curved directions# and along
the radii "rectilinear directions#\ respectively[

The tensor E includes the e}ects associated with the sliding motion\ and it has the following
form

E � h0v & n¦h1n & n[ "11#

Here\ h0 is a coe.cient of constraints imposed on the motion in direction tangent to the sliding
path\ h1 is a coe.cient of constraints imposed on the motion in direction normal to the sliding
path[ Coe.cient h0 de_nes the nonconservative force "dissipative type force#\ whereas coe.cient
h1 de_nes the conservative force "gyroscopic type force#[ Both coe.cients h0 and h1 are given in
meter units[

The de_nitions of tensors C and E are valid for all sliding trajectories "rectilinear\ curved\ zig!
zag\ etc#\ and for trajectories arbitrary oriented with respect to the concentric circles[ If a contact
plane has isotropic and homogeneous friction properties\ then C � m0\ E � 9 and t � −mNv[

After substitution tensor "11# into "04# we obtain
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Fig[ 2[ Sliding trajectory of a material point in a plane with non!homogeneous friction properties which form concentric
circles[

tr � −
Nh0

r
v−

Nh1

r
n[ "12#

The sliding path curvature generates] an additional friction "h0# and a reaction to constraints
normal to the curved sliding path "h1#[

Both terms in "12# depend on the curvature radius r[ This way\ the eqn "01# describes the e}ects
of the sliding path shape on friction[

Tensor bases of C and E depend on the position in the case of C and on the sliding motion in
the case of E[ Therefore\ unit vectors of the tensor bases have di}erent orientations at various
points of the contact area with respect to the reference system\ Fig[ 2[ The basis "k0\ k1# can be
transformed to the basis "v\ n# with the aid of the following transformation rule between the unit
vectors

ðk0\ k1ŁT � Bðv\ nŁT[ "13#

Coe.cients of the transformation matrix B � ðBijŁ\ i\ j � 0\ 1 are de_ned by

B00 � k0 = v\ B01 � k0 = n\ "14#

B10 � k1 = v\ B11 � k1 = n[ "15#

The transformation matrix B depends on the reference location[ Hence\ the tensor "10# takes the
following form

C � ðm0"B00#1¦m1"B10#1Łv & v¦"m0B00B01¦m1B10B11#"v & n¦n & v#

¦ðm0"B01#1¦m1"B11#1Łn & n[ "16#

After substitution "16# into "03#\ the component t9 is given by
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t9 � −N"ðm0"B00#1¦m1"B10#1Łv¦"m0B00B01¦m1B10B11#n#[ "17#

The tensor C can be de_ned in the following general form

C"X# � Cijki & kj\ i\ j � 0\ 1 Cij � const\ ki � ki"X#\ "18#

where\ "k0\ k1# is a basis of orthogonal or arbitrary unit vectors adequately oriented with respect
to _eld singularities "i[e[ with respect to a series of radii\ concentric circles and ellipses\ spirals\
etc[#[ The unit vectors k0 and k1 composing the tensor basis "ki & kj# have di}erent orientations
with respect to the reference system at various points X of the contact surface[ In spite of that the
tensor C de_nes steady friction properties of the surface[ In this study\ the tensor coe.cients Cij

are constant\ and Cij $ R[
A general form of the tensor E is as follows

E � Eklek & el\ k\ l � 0\ 1 Ekl � const\ "e0\ e1# 0 "v\ n#[ "29#

The orthogonal basis "v\ n# is associated with the sliding trajectory\ Fig[ 2[ There is no de_nition
of the tensor E in the tensor basis formed by k0 and k1 since E does not depend on friction
properties of the contact surface\ but it depends on the sliding motion represented by the unit
vectors v and n[ The tensor coe.cients are arbitrary Ekl $ R\ and some of the tensor coe.cients Ekl

can depend on the sliding velocity V[ It does not disturb the dry friction de_nition\ since these
tensor coe.cients\ Ekl de_ne a gyroscopic type component of the friction force[

2[ Properties

As in continuum mechanics the central topic for the constitutive models of anisotropic and non!
homogeneous friction are conditions of material objectivity\ the Second Law of Thermodynamics\
conditions of symmetry and particular representations of the constitutive relations[

The friction equation in the manner described has the following properties[

Property 0[ The friction eqn "01# and its variables satisfy the axiom of material objectivity[

According to the axiom of material objectivity it is required that constitutive equations must be
form!invariant with respect to translations and rotations of a reference system or an observer[ The
axiom of objectivity reduces a class of independent variables and forms of the constitutive func!
tionals that may be used for expressing constitutive equations[

At _rst we investigate the material objectivity of the independent variables in the constitutive
equation\ i[e[ v and dv:ds[ Let us assume that a motion of two contacting bodies A and B is de_ned
with the aid of radius vectors xA"XA\ t# and xB"XB\ t#\ where XA and XB are particles of the bodies[
The so!called equivalent motions we obtain as a result of a rigid rotation and a translation of the
reference system\ i[e[

x½A"XA\ t# � R"t#xA"XA\ t#¦b"t#\ "20#

x½B"XB\ t# � R"t#xB"XB\ t#¦b"t#\ "21#

for every rotation tensor R"t# and every translation vector b"t#[ Di}erentiating "20# and "21# we
get equivalent velocities
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V	A � Rx¾A¦RþxA¦b¾\ "22#

V	B � Rx¾B¦RþxB¦b¾[ "23#

If particles XA and XB are in contact at the present instant\ then the following relation holds

xA"XA\ t# � xB"XB\ t#[ "24#

Taking "22#Ð"24#\ an equivalent relative velocity at the contact point is given by

V	AB � V	A−V	B � R"x¾A−x¾B# 0 RVAB\ "25#

where\ the relative velocity is de_ned by

VAB � x¾A−x¾B[ "26#

Furthermore\ the orthogonal tensor R does not change a vector length\ thus we have

V	AB � =V	A−V	B = � =RVAB = � =VAB = 0 VAB[ "27#

Therefore\ the sliding velocity unit vector transforms in accordance to the following rule

v½ �
V	AB

V	AB

�
RVAB

VAB

� Rv[ "28#

This implies that the sliding velocity unit vector is the objective vector[
The same transformation rule acts in the case of dv:ds\ i[e[

dv½

ds
�

d
ds

"Rv# �
dR

ds
v¦R

dv

ds
� R

dv

ds
\ "39#

since the rotation tensor R"t# transforms rigidly the reference system\ and it does not depend on
the position "s# in the sliding trajectory

R � R"t# :
dR

ds
� 9[ "30#

It means that for all sliding trajectories tensor R is the same[ Thus\ the independent variable dv:ds
is the objective vector[

Adopting the rule proposed by Noll\ the material objectivity condition for the friction force "09#
has the following form

t 0Rv\ R
dv

ds
\ N1� Rt 0v\

dv

ds
\ N1\ [R $ O[ "31#

where\ O is the full orthogonal group and the orthogonal tensor R has the following properties

RRT � RTR � 0 det R � 20[ "32#

The friction force function of the unit vector v\ vector dv:ds and scalar N must be form!invariant
with respect to arbitrary transformation from the full orthogonal group O[ After substitution "01#
and "31# we get
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t 0Rv\ R
dv

ds
\ N1� −N 0CRv¦ER

dv

ds1� Rt 0v\
dv

ds
\ N1[ "33#

Notice\ that the tensors C and E in "33# are isotropic[ Under a change of observer\ anisotropic
tensors C and E transform according to the following rule

C	 � RCRT\ E	 � RERT[ "34#

It means\ that a sliding surface with privileged sliding directions changes its orientation under the
superposed rigid rotation R of the reference system[ The orientation of the privileged sliding
directions " frictional anisotropy# with respect to the reference system should be maintained[ By
virtue of the de_nition "31#\ we investigate material objectivity in the case of anisotropic tensors
C and E as follows

t 0Rv\ R
dv

ds
\ N1� −N 0C	Rv¦E	R

dv

ds1� Rt 0v\
dv

ds
\ N1[ "35#

Property 1[ The condition of energy dissipated in friction process restricts components of the
tensors C and E[

From the Second Law of Thermodynamics it follows that a power of the friction force in every
case of the frictional contact is non!positive "Zmitrowicz\ 0881a\ 0884b#\ i[e[

t = V ¾ 9\ [V[ "36#

The friction constitutive relations are assumed to satisfy the dissipation inequality "36# for any
motion[

Substituting the friction eqn "01# and "36#\ we obtain

−N 0Cv¦E
n

r1 = V ¾ 9[ "37#

Taking into account that N − 9 and V × 9\ the inequality "37# reduces to the condition as follows

vTCv¦vTEn
0
r

− 9\ [V[ "38#

Let us consider r × 9 and the following restrictions for the tensors C and E

vTCv − 9\ vTEn − 9[ "49#

Then the inequality "38# is satis_ed for every V and every positive radius of curvature r $ R¦\ i[e[
for every sliding direction and for every sliding trajectory with positive curvature[

Let us assume that r × 9 and

vTCv × 9\ vTEn ¾ 9 "40#

then the inequality "38# is satis_ed for every V and for some trajectories\ i[e[ for some values of
the positive curvature radii
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r − −
vTEn

vTCv
[ "41#

If the radius of curvature is negative r ³ 9 and the restrictions "49# are taken into account\ then
the inequality "38# is satis_ed for the following radii of curvature

r ¾ −
vTEn

vTCv
[ "42#

Taking r ³ 9 and the restrictions "40#\ the dissipation inequality "37# holds for every negative
radius of curvature r $ R−[

We do not consider the case vTCv ³ 9\ since in particular cases\ i[e[ for rectilinear trajectories
"r � �# and for homogeneous friction\ the inequality "38# reduces always to the restriction of the
form vTCv − 9[

The 2 sign of the radius r corresponds to the choice of orientation[ We apply the sign plus for
radii of the concentric circles[

Property 2[ C and E obey the rules of transformations for tensors[

In general\ after transformation to a new reference system\ the tensor C takes the following form

C	 � CIJk½ I & k½ J\ I\ J � 0\ 1[ "43#

Let a rule of transformation of the tensor basis unit vectors be as follows

ki � AI
ik½ I\ kj � AJ

j k	J\ i\ j � 0\ 1 "44#

where\ AI
i and AJ

j are coe.cients of the transformation[ Then\ we get

C � Cijki & kj � CijAI
iA

J
j k½ I & k½ J\ "45#

and

CIJ � CijAI
iA

J
j [ "46#

The tensor E has the same property[ Let the rule of transformation of the basis unit vectors be
given by

ek � DK
k e½K\ el � DL

l e½L\ k\ l\ K\ L � 0\ 1 "47#

where\ DK
k and DL

l are transformation coe.cients[ Then\ we have

E � Eklek & el � EklDK
k DL

l e½K & e½L � EKLe½K & e½L � E	\ "48#

EKL � EklDK
k DL

l [ "59#

We conclude that C	 and E	 can be calculated knowing Cij\ Ekl and the rule of transformation from
the _rst to the second reference system[ Objects obeying the rules of transformations "45# and "48#
are called tensors[

Property 3[ If non!homogeneous friction properties are in the form of concentric circles\ and if the
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constraints normal to the curved sliding trajectory are neglected "h1 � 9#\ then there are two
principal directions of friction\ i[e[ radial and tangent to the concentric circles[

The sliding along the so!called principal directions has the following property] the sliding velocity
unit vector v and the friction force vector t are collinear vectors[ In the general case\ v and t are
not collinear[

The friction force vector expressed by "01# is related to the unit vector v indicating the principal
direction at the contact by

−N 0Cv¦E
n

r1� −Nlv "50#

where\ l is a positive number[ After substituting into "50# the tensor E of the form "11# and
assuming h1 � 9\ we obtain

0BCBT¦
h0

r
01 v � lv\ "51#

where\ B is the transformation matrix of the form "14# and "15#\ the second!order unit tensor is
given by 0 � v & v¦n & n[

Let us consider rectilinear radial sliding directions[ Taking the following relations

k0 � n\ k1 � −v\ r � �\ "52#

ðBŁ � $
9 0

−0 9%\ "53#

ðBCBTŁ � $
m1 9

9 m0%\ "54#

the equation of principal directions "51# reduces to the following form

m1v � lv\ "55#

where\ l � m1[ Here\ l does not depend on the position with respect to the center of concentric
circles[ Therefore\ every radial direction is the principal direction of friction[ For sliding along any
radius and for any distance from the center\ the friction coe.cient has constant value "ma � m1#
and the inclination angle of the friction force is equal to zero "b � 9#[

Let the sliding trajectory be a circle of the radius r � r attached to the center of concentric
circles[ Using the following relations

k0 � v\ k1 � n\ r � r\ "56#

B � 0\ "57#

ðBCBTŁ � $
m0 9

9 m1%\ "58#

the eqn "51# takes the following form
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0m0¦
h0

r 1 v � lv\ "69#

where\ l � m0¦h0:r for any direction v tangent to the concentric circles[ Here\ the number l

depends on the position r[ Therefore\ any direction tangent to the concentric circle is the principal
direction[

In this analysis\ all other sliding directions v do not satisfy eqn "51#\ and they are not principal
directions of friction[

If the sliding trajectory is a curve and h1 � 9\ then the gyroscopic component of the vector tr
acts[ It is always normal to the sliding direction v[ Then\ the sliding direction and the friction force
are not collinear in the most cases[

Property 4[ The non!homogeneous friction properties in the form of concentric circles have an
axial symmetry with respect to the axis which passes through the center of the concentric circles[
The symmetry with respect to translations reduces to zero element[ If the additional friction
induced by the path curvature is neglected "h0 � 9#\ then there are radial and concentric circular
directions of friction extreme values[

If the transformation of the reference system "or an observer# does not change a course of the
friction phenomenon\ then this transformation belongs to symmetry transformations[ In the
mathematical sense\ the symmetry transformations form a group[ Using symmetry properties we
can distinguish di}erent types of constitutive models[

For h1 � const the analysed friction has the axial symmetry\ and its group of symmetry G
contains rotations about a normal to the contact crossing the center C of the concentric circles

"Rf
c \ f $ ð9\ 1pŁ# $ G[ "60#

Radial and concentric circular directions have mirror re~ections with respect to planes crossing
the center of the concentric circles and they belong to elements of the symmetry group "Rf

c #[ There
are no mirror re~ections with respect to other planes normal to the contact surface[ Here\ the
inversion is identical with the rotation through the angle f � p\ and the identity is equivalent to
the rotation angle f � 9[

If the given translation in the contact area does not change the friction phenomenon\ then this
translation belongs to symmetry transformations[ For example\ the anisotropic friction homo!
geneous in the contact area has a continuous symmetry group of translations along arbitrary axes
in the space R1\ i[e[

"Td\ d $ ð9\ �Ł# $ G\ "61#

where Td is a translation vector[
The independent variable n:r of the friction equation depends on the position r[ Therefore\ there

is no symmetry with respect to the translation d\ since n:r � n:"r¦d#[ It acts for any tensor E[ In
this case\ the symmetry group with respect to translations reduces to zero element

"Td\ d � 9# $ G[ "62#

The analysed friction has not symmetry with respect to translations along any axes[
In experimental investigations it is observed that] "a# friction of wood is dependent on whether
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Fig[ 3[ Radial and concentric circular privileged sliding directions in a plane with non!homogeneous friction properties
which form] "a# concentric circles\ see Fig[ 0 "c#^ "b# radii relative to the center of the plane\ see Fig[ 0"d#[ D is the
dissipation function[

sliding takes place parallel to or perpendicular to the wood _bers^ "b# when two surfaces of PTFE
"Te~on# are oriented with their molecular chains\ in parallel\ the friction is approximately 29)
higher when sliding occurs across the chains than when sliding occurs along them "Tabor and
Williams\ 0850#^ "c# friction and wear of composites depend on a _ber orientation with respect to
the sliding direction\ it has been shown that the lowest coe.cient of friction and rate of wear are
obtained when _bers are oriented parallel to the direction of sliding "Sung and Suh\ 0868^ Chang\
0872^ Minford and Prewo\ 0874^ Nayeb!Hashemi et al[\ 0880^ Saka et al[\ 0881#^ "d# for surfaces
with de_nite marks "surface texture# friction is smaller when the matching lines lie in the direction
of sliding and it reaches the greatest values when they are perpendicular to the sliding direction
"Halaunbrenner\ 0859^ Matalin\ 0869^ Wang et al[\ 0881#[ Generally\ it is observed that the sliding
{along the marks| "i[e[ wood _bers\ molecular chains of PTFE\ composite _bers\ machining marks#
occurs with the lowest resistance to motion\ and it has the greatest resistance in the direction
{perpendicular to the marks|[

Let us consider particular properties of the non!homogeneous friction de_ned with the aid of
the tensor C of the form "10#[ Here\ we neglect the addition friction "h0 � 9#[ In this case\ there
are two types of privileged sliding directions] the _rst is radial "i[e[ along the radii from the center
of concentric circles#\ the second in concentric circular "i[e[ along the concentric circles#\ see Fig[
0"c# and Fig[ 3"a#[ There is an in_nite number of both privileged directions of friction[

As a measure of the lowest and greatest resistance to motion we take a value of energy dissipated
in friction process[ Let the power of the friction force referred to the unit velocity "V � 0# be a
dissipation function\ i[e[

D � −t = v 0 m>
aN[ "63#

In the case of radial directions\ the sliding takes part ideally {perpendicular to the marks|\ and
one can expect that the radial direction is a direction of the greatest resistance to motion in the



A[ Zmitrowicz:International Journal of Solids and Structures 25 "0888# 1714Ð17371739

contact[ The energy dissipated in friction for the sliding in radial directions achieves the maximum
value

Dmax � max
r$"9\�#
a$ð9\1pŁ

D"r\ a# "64#

for all contact points i[e[ for every circle radius r $"9\ �# and for all sliding directions a $ ð9\ 1pŁ\
Fig[ 3"a#[ a is a measure of an oriented angle between the reference direction Ox and the sliding
direction v "see Fig[ 1#[

In the case of rectilinear radial directions the component tr is always equal to zero[ Thus\ the
component t9 guarantees the maximum of dissipated energy for the radial directions\ and the
friction coe.cient has the maximum value in these directions

mmax � max
r$"9\�#
a$ð9\1pŁ

m>
a"r\ a#[ "65#

We assume that m1 � mmax[
Particular friction properties of the concentric circular directions are associated with the sliding

along the concentric circles\ i[e[ {along the marks|[ Then\ the sliding has the lowest resistance to
motion\ and it does not depend on a position in the circle "i[e[ it is valid for any sliding velocity
unit vector tangent to the circle#[

In the sliding along the concentric circles\ the constraint imposed on the sliding and expressed
by the coe.cient h1 is active[ Thus\ the inclination angle b exists\ and its value depends on the
coe.cient h1 and on the radius r[

It is assumed that h0 � 9\ then the component tr is normal to the circular trajectory\ and the
component t9 guarantees the minimum of dissipated energy[ For the sliding along the concentric
circles the energy dissipated in friction achieves the minimum value

Dmin � min
r$"9\�#
a$ð9\1pŁ

D"r\ a# "66#

for every point r of the contact and for all sliding directions a\ Fig[ 3"a#[ The minimum value of
the dissipated energy does not depend on the position of the contact point with respect to the
center of concentric circles[ The coe.cient m>

a of the friction force component tangent to the
concentric circular trajectory is constant for [r $"9\ �#[ Then\ the friction coe.cient has the
minimum value in the sliding along the concentric circles

mmin � min
r$"9\�#
a$ð9\1pŁ

m>
a"r\ a# "67#

We denote that m0 � mmin[ Taking h0 � 9\ all concentric circular sliding trajectories are equivalent[
With the aid of h0 � 9\ we can distinguish di}erent concentric circular trajectories[

Notice that in an in_nity a direction tangent to the concentric circle is not equivalent to the
adequate radial direction[ The radial directions are always {perpendicular to the marks| and the
tangent direction in an in_nity is {along the marks|\ Fig[ 4[

Let us assume that the coe.cient h1 in eqn "12# is constant\ then the inclination angle b\ the
friction force value =t= and the coe.cients ma and m0

a are constant for all points of the circular
trajectory[ Hence\ the main features of the concentric circular directions are following] the energy
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Fig[ 4[ In an in_nity a direction tangent to the concentric circle is not equivalent to the adequate radial direction[

dissipated in friction has the minimum value\ the inclination angle b � 9 depends on the circle
radius r "it is constant for all points of the circle# and b : 9 for r : �[ Other values of limits are
as follows

r : �6
tr : 9 "i[e[ b : 9#

t : t9 "i[e[ ma"t# : ma"t9##
[ "68#

Next\ let us assume that the coe.cient h1 in eqn "12# depends on the sliding velocity V[ Then\
the inclination angle b\ the friction force value =t= and the coe.cients ma and m0

a depend on the
velocity V at the given point of the circular trajectory[ In this case\ the angle b function depends
on the position r\ the sliding direction a and the sliding velocity V\ i[e[

b � b"r\ a\ V#\ "79#

where\ r $"9\ �#\ a $ ð9\ 1pŁ\ V $ ³ 9\ �#[ The function "79# has the following limit value with
respect to the circle radius r

lim
r:�

b"r\ a\ V# � 9\ [a $ ð9\ 1pŁ\ [V $ ³ 9\ �#[ "70#

In this case\ the friction coe.cient ma function "06# of the form

ma"t# � ma"r\ a\ V#\ "71#

has the following limit value

lim
r:�

ma"r\ a\ V# � m>
a � mmin\ [a $ ð9\ 1pŁ\ [V $ ³ 9\ �#[ "72#

Functions of ma and b depend on the position r of the contact point with respect to the center of
concentric circles[ Hence\ the friction force value is a local quantity[ The friction force value
changes from point to point\ and some properties of friction vanish in an in_nity "r : �#[ However\
particular properties of friction "radial and concentric circular directions of extreme friction values#
refer to global properties of the non!homogeneous friction in the form of concentric circles[

Non!homogeneous friction properties which form a series of radii relative to the center of the
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contact surface Fig[ 0"d# have two types of privileged sliding directions\ i[e[ radial and concentric
circular\ see Fig[ 3"b#[ The sliding in the radial direction takes part {along the marks| i[e[ with the
lowest resistance to motion[ The sliding along the concentric circles takes part {perpendicular to
the marks| i[e[ with the greatest resistance to motion[ Therefore\ one can de_ne that particular
friction in the frame of this study taking into account m0 � mmax and m1 � mmin "i[e[ by changing the
indices of the friction coe.cients corresponding to the friction extreme values#[

An isotropic tensor C and the tensor E of the form "11# de_ne isotropic non!homogeneous
friction[ In that case\ friction depends on the position with respect to a singular point of the contact
area but there are no privileged sliding directions[ It means\ at some instances\ sliding {along the
marks| and {perpendicular to the marks| can occur with the same resistance to motion\ then
m0 � m1 0 m\ C � m0[

Property 5[ The tensors C and E have orthotropic and anisotropic properties\ respectively[

The subgroup G"C# of the full orthogonal group O is a symmetry group of the friction tensor
C\ if it satis_es the following

G"C# � 6R ] R $ O\ 0&
1

0
R1 = C � C7\ "73#

where\ the linear operator &

1

0
denotes two compositions "contractions# of the following form

0&
1

0
R = C1� CijRki & Rkj � R"Cijki & kj#RT � RCRT i\ j � 0\ 1[ "74#

This rule de_nes the tensor symmetry with respect to the transformation R[ Here\ we employ the
identity "0#\ the inversion "−0# and mirror re~ections "Jmi

# as symmetry operations[
The mirror re~ection Jmi

means a re~ection in a plane normal to the mi!axis\ and it can be
de_ned by a composition of the rotation about mi and the central inversion "−0#\ i[e[

Jmi
� −0Rp

mi
\ "75#

where\ Rp
mi
describes the rotation about the axis mi through the angle of rotation p[

The tensor C of the form "10# is an orthotropic tensor[ Coe.cients m0 and m1 are eigenvalues of
the tensor C\ and two orthogonal eigenvectors m0 and m1 coincide with the unit vectors k0 and k1

and they satisfy the following equation

Cki � miki\ i � 0\ 1 "76#

where\ ki = kj � dij\ i\ j � 0\ 1[ Therefore\ the tensor "10# is written with respect to the tensor basis
composed of eigenvectors "so!called spectral decomposition of the tensor#[

The symmetry group of the orthotropic tensor has the trivial subgroup 20 and the subgroup
of mirror re~ections with respect to two planes orthogonal to the eigenvectors k0 and k1\ i[e[

G"C# � "20\ Jk0
\ Jk1

#[ "77#

In general\ any second!order symmetric tensor has the symmetry group of the type "77#\ and it
satis_es the following condition



A[ Zmitrowicz:International Journal of Solids and Structures 25 "0888# 1714Ð1737 1732

C � CT[ "78#

The second!order tensor is symmetric if its representation matrix is symmetric[ The tensor C

representations "10# and "16# satisfy these conditions[
The tensor E of the form "11# is an anisotropic tensor[ The anisotropic tensor has a trivial two!

element group of symmetry

G"E# � "20#[ "89#

There are no restrictions on the anisotropic tensor representation[
The tensors C and E are de_ned locally i[e[ at the given point of the contact surface "C# and at

the given point of the sliding trajectory "E#[ Since the description deals with non!homogeneous
friction\ therefore local symmetry properties of the tensors C and E are completely di}erent from
global properties of the considered friction[ This is the reason that the global axial symmetry "i[e[
"Rf

c ## and the translation symmetry "i[e[ "Td\ d � 9## do not restrict forms of the tensors C and E[

Property 6[ In the case of non!homogeneous friction properties in the form of concentric circles\
we can distinguish positive and negative additional friction taking into account a sign of the
coe.cient h0[

Taking tensors C and E of the form "10# and "11# and the relations "56#\ we obtain from "01#
the following friction force for the sliding along concentric circles "r � r#

t � −N $0m0¦
h0

r 1 v¦
h1

r
n%[ "80#

Here\ the coe.cient of the friction force component collinear with the sliding direction v is given
by

m>
a � m0¦

h0

r
\ "81#

where\ m0 × 9\ h0 $ R[ In the case of sliding along concentric circles r $ R¦\ the coe.cient m>
a as a

function of the position r has two di}erent courses depending on a sign of the coe.cient h0\ see
Fig[ 5 "m0 � 9[0\ h0 � 29[90m\ r $"9\ 0[9m×#[ If h0 × 9 "positive additional friction#\ then friction
decreases when r increases[ If h0 ³ 9 "negative additional friction#\ then friction increases when r
increases[ A limiting radius "i[e[ a lower limit of radii r# exists in the case h0 ³ 9\ and it is equal to
rl � h0:m0 � 9[0 m[

An in_nite friction in r � 9 and negative values of friction in the domain r $ ð9\ rlŁ in the case
h0 ³ 9 must be excluded from the considerations\ since they are physically meaningless[

In the case of h0 ³ 9\ maximum friction is for large radius of the circle and signi_cant reduction
in friction is when the radius approaches the limiting radius rl[ Therefore\ the negative additional
friction "h0 ³ 9# leads to the results which coincide with experimental observations carried out by
Briscoe and Stolarksi "0868\ 0874\ 0880#[

Property 7[ A value of the friction force at the given point of the contact area depends on the
sliding direction and on a shape of the sliding path[ Considering di}erent sliding trajectories we
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Fig[ 5[ Coe.cient m>
a of the friction force component collinear with the sliding direction vs radius r\ in two cases] "a#

positive additional friction^ "b# negative additional friction[

obtain di}erent friction force hodographs at the given contact point[ Furthermore\ the sliding
initiated by an applied force or velocity depends on the trajectory[

A curve drawn by the friction force vectors attached to the origin of the coordinate system Ot0t1

is called the hodograph of the friction force[ t0 and t1 are components of the friction force with
respect to the reference system[ Sometimes it is called a cross!section of a friction cone[ In the case
of classical friction law\ a shape of the hodograph curve can be obtained by _nding friction forces
in all sliding directions[

The shape of the curve drawn by the vector t9 can be found using the identity relation v = v � 0\
after substitution
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v � −
0
N

C−0t9\ "82#

which follows from the de_nition "03#[ Hence\ the friction vector t9 draws an ellipse de_ned by the
following equation

tT9C−TC−0t9 � N1[ "83#

Taking into account tensor C of the form "10#\ we obtain the friction hodograph equation given
by

"t0#1

"m0#1
¦

"t1#1

"m1#1
� N1[ "84#

Here\ the components t0 and t1 of the vector t9 are given with respect to the basis "k0\ k1#[ Half!
axes of the ellipse are equal to m0N and m1N[ At any point of the contact area\ the half!axis m0N is
tangent to the concentric circle and the half!axis m1N is directed along radii of the concentric
circles[

In the case of isotropy "m0 � m1 0 m#\ the hodograph equation reduces to the following circle
equation

"t0#1¦"t1#1 � m1N1[ "85#

If we take into account the dissipative component of the vector tr\ then the curve drawn by the
vector t � t9¦tr is not an ellipse[ The dissipative component of the vector tr causes\ that the
friction hodograph depends on the sliding path curvature[ The friction force has di}erent values
for various sliding path curvatures[

There is no possibility to de_ne friction hodograph without a knowledge of sliding path shapes[
We can do that in some particular cases[ Assuming that at the given contact point the sliding
trajectories for all sliding directions v are straight lines "r � �#\ then the hodograph equation
reduces to the cases "83# and "84#[ One can consider the sliding trajectories of the given type
constant for all sliding directions v\ e[g[ circles of the given radius r[ Then the ellipse drawn by the
vector t9 is modi_ed by the dissipative component −"Nh0:r#v added to t9 and constant for all
sliding directions[ Another approach*di}erent sliding trajectories can be taken for various sliding
directions v\ e[g[ a circle of the given radius for the direction tangent to the concentric circle and a
straight line for the radial direction with respect to the concentric circles[ For all intermediate
directions v the sliding trajectories can change smoothly from the circular to the straight line[ The
sliding direction v is always tangent to the actual trajectory[ Then the ellipse of the vector t9 is
modi_ed by the component −"Nh0:r#v which changes its value depending on the sliding direction[

If the sliding is caused by an initial velocity\ then an initial sliding direction coincides with the
velocity direction[ The initial velocity vectors de_nes unit vectors v and n\ and the sliding trajectory
can be assumed to be a straight line "r � �# at the initial instant[

An initial sliding direction v caused by an applied force f is such that the sum of the components
orthogonal to it "the applied force and the friction force# is equal to zero\ i[e[

ðf−"f = v#vŁ¦ðt−"t = v#vŁ � 9[ "86#
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Then\ the absolute value of the applied force projection on the sliding direction is greater then the
absolute value of the friction force projection on this direction

=f = v= × =t = v=[ "87#

The initial sliding direction is the direction of the lowest resistance to motion[ This de_nition is
identical with the de_nition in the case of classical friction law[

Let us consider the initial sliding in the case of the non!homogeneous friction in the form of
concentric circles[ If the additional friction is positive "h0 × 9#\ then a straight line is the most
advantageous initial sliding trajectory[ In that case\ the dissipative and gyroscopic components of
the vector tr are equal to zero\ and the applied force f causing the sliding is the lowest between all
admissible forces\ i[e[ the straight line trajectory guarantees the lowest resistance to motion[

In the case of negative additional friction "h0 ³ 9#\ a circle of the limiting radius r � rl is the
most advantageous initial sliding trajectory[ In that case\ friction reduces to zero\ i[e[ m>

a � 9\ and
there is no resistance to sliding[

3[ Conclusions

"0# A non!homogeneous anisotropic friction constitutive equation with the sliding path curvature
e}ects is presented[ The equation and its variables satisfy the axiom of objectivity[ The
condition of dissipated energy "the Second Law of Thermodynamics# restricts components of
the tensors in the equation[

"1# In the surface with non!homogeneous friction properties in the from of concentric circles\
besides rectilinear "radial# also curved "concentric circular# privileged sliding directions occur[
Principal directions of friction and extreme friction directions are distinguished\ taking into
account restrictions on coe.cients h0 and h1[

"2# Non!homogeneous friction in the form of concentric circles has the global axial symmetry[ Its
group of symmetry with respect to translations reduces to zero element[ The constitutive
equation tensors C and E are de_ned locally and they have orthotropic and anisotropic
properties\ respectively[

"3# Positive additional friction and negative additional friction are induced by the sliding path
curvature[ The friction force hodograph and the sliding initiated by an applied force or velocity
depend on the sliding trajectory[

"4# The phenomenological friction equation has two main advantages] it contains a _nite number
of parameters "it is easy to plan simple experiments#\ it can be expanded to other non!
homogeneous anisotropic friction types[ Considerations presented in this study require further
experimental work and test evaluation[

Most of the activity in anisotropic friction investigations is motivated by the interest in _brous
and laminated composites and in ceramics applied in modern machine component parts operating
in contact conditions[ A large number of composite materials have good wear properties and can
be used unlubricated[ Ceramics are attractive as mechanical components because of their extreme
hardness and excellent wear resistance[

A detailed analysis of non!homogeneous anisotropic friction would be useful amongst engineers
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and those engaged in machining operations and in applications of surfaces with textured pro_les[
Surfaces of the prescribed regular microgeometry "parallel or spiral microgrooves\ etc[# distinguish
a great resistance to seizing and to abrasion in the conditions of dry friction[ The microgrooves
can improve lubrication[
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